

OILES 500SP5 New Series SP5B

Ultrathin Thickness available from 1mm

http://www.oilesglobal.com

OILES 500SP5-SL1 Thin Wall Bush

Reliable OILES Quality assuring high strength and high durability with thin walls

The use of original metal featuring high strength and high wear resistance leads to reliable performance and longer life with thin walls.

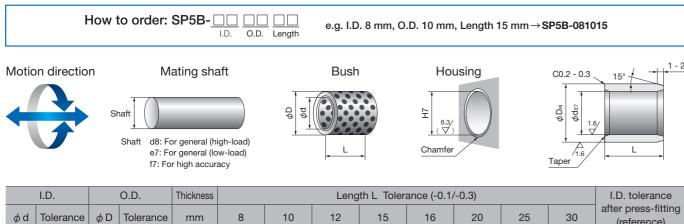
Bearing service range

Lubrication condition	Dry	Periodic lubrication			
Temperature Range	$-40 \sim +150^{\circ}C$				
Allowable max. pressure: P N/mm ² {kgf/cm ² }	49{500}				
Allowable max. velocity: V m/s {m/min}	0.25{15}	0.50{30}			
Allowable max. PV value	1.65{1,010}	3.25{1,990}			

SP5B Dimension Table

Thickness available

from 1mm

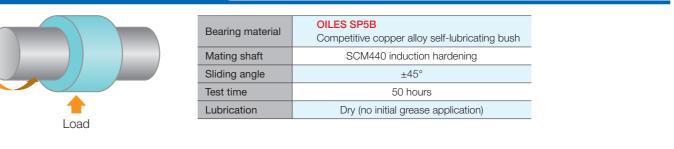

RoHS

ELV

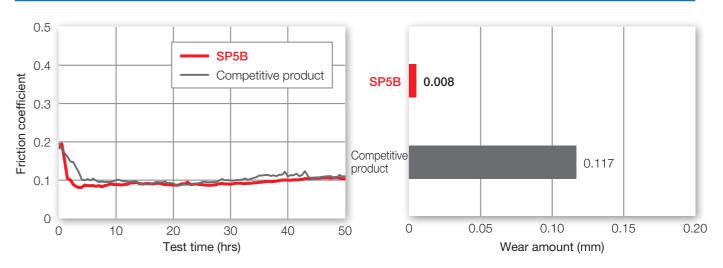
Density		g/cm ^e	7.8
Tensile strength	JIS Z 2241	N/mm ² {kgf/mm ² }	785{80}
Tensile elongation at break	JIS Z 2241	%	10
Compressive strength	_	N/mm ² {kgf/mm ² }	390{40} ^(Note 1)
Hardness	JIS Z 2243	—	HB235
Modulus of longitudinal elasticity	JIS Z 2241	N/mm ² {kgf/mm ² }	98,000{10,000}
Co-efficient of linear expansion	—	×10 ^{-5°} C ⁻¹	2.13

The values shown above are typical values, not the standard values.

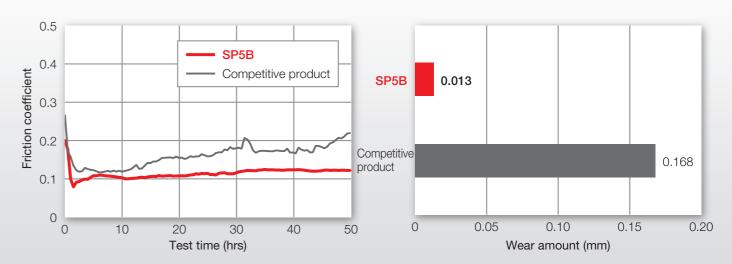
(Note 1) Compressive strength is 0.1%.


												-	
ϕ d	Tolerance	φD	Tolerance	mm	8	10	12	15	16	20	25	30	after press-fitting (reference)
6	+ 0.032 + 0.020	8	+ 0.028 + 0.019	1.0	060808	060810	060812	060815	060816				+ 0.016 + 0.004
8	+ 0.040 + 0.025	10	+ 0.028 + 0.019	1.0	081008	081010	081012	081015	081016				+ 0.024 + 0.009
10	+ 0.040 + 0.025	12	+ 0.034 + 0.023	1.0		101210	101212	101215	101216				+ 0.021 + 0.006
12	+ 0.050 + 0.032	15	+ 0.034 + 0.023	1.5			121512	121515	121516	121520			+ 0.031 + 0.013
15	+ 0.050 + 0.032	18	+ 0.034 + 0.023	1.5			151812	151815	151816	151820			+ 0.031 + 0.013
16	+ 0.050 + 0.032	20	+ 0.041 + 0.028	2.0			162012	162015	162016	162020	162025		+ 0.026 + 0.008
20	+ 0.061 + 0.040	24	+ 0.041 + 0.028	2.0				202415	202416	202420	202425	202430	+ 0.037 + 0.016
25	+ 0.061 + 0.040	29	+ 0.041 + 0.028	2.0					252916	252920	252925	252930	+ 0.037 + 0.016

* I.D. tolerance after press-fitting is for reference which is applied when press-fitting is performed based on the recommended housing bore tolerance (H7).

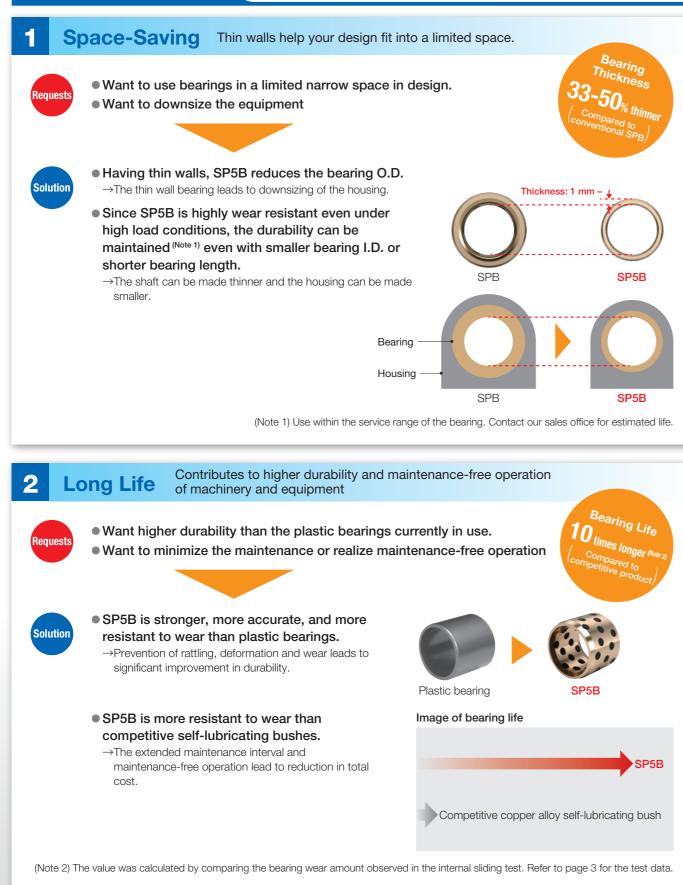

Application Examples

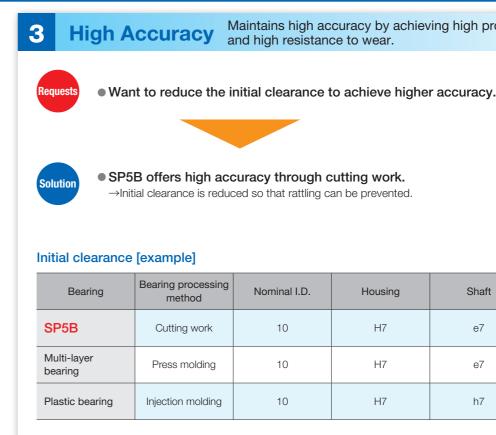
- Automobile production plants (e.g. Hangers for painting and assembly conveyor lines)
- Food, medical supplies and cosmetics machinery (labeling machines, filling machines, capping machines, wrapping machines, testing machines, weighing machines)
- Plant equipment (parts feeders, cutting machines, processing machines, assembly machines) • Others (chucking mechanism, lifting mechanism, various types of guides and links, etc.)

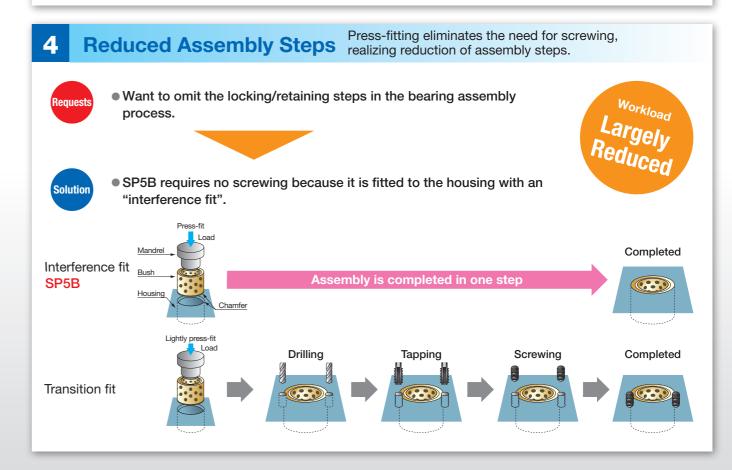

Sliding Test Data

Test A: High load / low speed Pressure: 49N/mm² {500kgf/cm²} Velocity: 0.017m/s {1.02m/min}

Test B: Medium load / medium speed Pressure: 18N/mm² {184kgf/cm²} Velocity: 0.046m/s {2.76m/min}




7.0



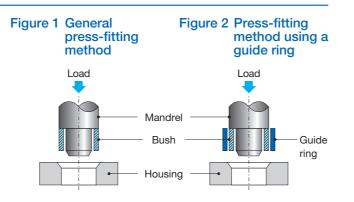
SP5B Features

Maintains high accuracy by achieving high processing accuracy

Housing	Shaft	Initial clearance (median)
H7	e7	46µm
H7	e7	67µm
H7	h7	107 <i>µ</i> m

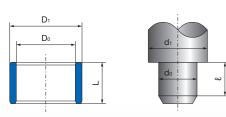
About Press-Fitting Methods

Press-fitting methods


Housing

- Press-fit the bush hydraulically, pneumatically or with a vise.
- *Press-fitting with a hammer or other item that causes a shock may lead to damage or changes in I.D.
- Chamfer the housing.
 (Dound chamfering or tapars)
- (Round chamfering or tapered chamfering is preferable.)
- Apply oil or grease for smooth press-fitting.

About press-fitting jigs


Generally, use a mandrel as shown in **Figure 1** to press-fit a bush into an insertion section of the housing. Using a guide ring as shown in **Figure 2** will facilitate the press-fitting.

The use of a guide ring is effective in terms of I.D. circularity and centering after press-fitting, for prevention of damage to the bush during press-fitting, and so on.

Determine the mandrel size based on the table below.

Bush size (nominal)	Mandrel size
I.D. (D ₀)	d ₀ =D ₀ -(0.05-0.10)
O.D. (D ₁)	d ₁ =D ₁ -(0.20-0.30)
Length (L)	$\ell \geqq L$

Bush I.D.Guide ring I.D.Guide ring O.D. $\sim \phi 25$ D_1+(0.1-0.3)D_1+(10-15)MandrelImage: Comparison of the second seco

Determine the guide ring size based on the table below.

OILES bearing products

Besides SP5B, OILES offers a variety of bearings for a wide range of applications.

- Plastic OILES bearings
 OILES air bearings
- Multi-layer OILES bearings
- Metallic OILES bearings

The product information is available on our web site.

3D CAD DATA

You can download 3D CAD data for free from PART Community (operated by CADENAS WEB2CAD INC.), which is also accessible from our product information web page.

• OILES slide shifters (reciprocating guide units)